On the interpretation of Stratonovich calculus

نویسندگان

  • W Moon
  • J S Wettlaufer
چکیده

The Itô–Stratonovich dilemma is revisited from the perspective of the interpretation of Stratonovich calculus using shot noise. Over the long time scales of the displacement of an observable, the principal issue is how to deal with finite/ zero autocorrelation of the stochastic noise. The former (non-zero) noise autocorrelation structure preserves the normal chain rule using a mid-point selection scheme, which is the basis Stratonovich calculus, whereas the instantaneous autocorrelation structure of Itôʼs approach does not. By considering the finite decay of the noise correlations on time scales very short relative to the overall displacement times of the observable, we suggest a generalization of the integral Taylor expansion criterion of Wong and Zakai (1965 Ann. Math. Stat. 36 1560–4) for the validity of the Stratonovich approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Black-Scholes option pricing within Itô and Stratonovich conventions

Options are financial instruments designed to protect investors from the stock market randomness. In 1973, Fisher Black, Myron Scholes and Robert Merton proposed a very popular option pricing method using stochastic differential equations within the Itô interpretation. Herein, we derive the Black-Scholes equation for the option price using the Stratonovich calculus along with a comprehensive re...

متن کامل

Itô versus Stratonovich calculus in random population growth.

The context is the general stochastic differential equation (SDE) model dN/dt=N(g(N)+sigmaepsilon(t)) for population growth in a randomly fluctuating environment. Here, N=N(t) is the population size at time t, g(N) is the 'average' per capita growth rate (we work with a general almost arbitrary function g), and sigmaepsilon(t) is the effect of environmental fluctuations (sigma>0, epsilon(t) sta...

متن کامل

Nonlinear stochastic equations with multiplicative Lévy noise.

The Langevin equation with a multiplicative Lévy white noise is solved. The noise amplitude and the drift coefficient have a power-law form. A validity of ordinary rules of the calculus for the Stratonovich interpretation is discussed. The solution has the algebraic asymptotic form and the variance may assume a finite value for the case of the Stratonovich interpretation. The problem of escapin...

متن کامل

Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem

We introduce the Stratonovich version of quantum stochastic calculus including integrals with respect to emission (creation), absorption (annihilation) and scattering (conservation) processes. The calculus allows us to consider the limit of regular open dynamical systems as a quantum Wong-Zakai approximation theorem. We introduce distinct definitions of Itô Dyson and Stratonovich Dyson time-ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014